TAILIEUCHUNG - An enhanced method for human action recognition

This paper presents a fast and simple method for human action recognition. The proposed technique relies on detecting interest points using SIFT (scale invariant feature transform) from each frame of the video. A fine-tuning step is used here to limit the number of interesting points according to the amount of details. Then the popular approach Bag of Video Words is applied with a new normalization technique. This normalization technique remarkably improves the results. Finally a multi class linear Support Vector Machine (SVM) is utilized for classification. Experiments were conducted on the KTH and Weizmann datasets. The results demonstrate that our approach outperforms most existing methods, achieving accuracy of for KTH and for Weizmann. | Journal of Advanced Research 2015 6 163-169 Cairo University Journal of Advanced Research ORIGINAL ARTICLE An enhanced method for human action recognition CrossMark Mona M. Moussa a Elsayed Hamayed b Magda B. Fayek b Heba A. El Nemr a a Computers and Systems Department Electronics Research Institute Egypt b Computer Engineering Department Faculty of Engineering Cairo University Egypt ARTICLE INFO ABSTRACT Article history Received 28 July 2013 Received in revised form 26 November 2013 Accepted 27 November 2013 Available online 5 December 2013 Keywords SIFT Action recognition Bag of words svM This paper presents a fast and simple method for human action recognition. The proposed technique relies on detecting interest points using SIFT scale invariant feature transform from each frame of the video. A fine-tuning step is used here to limit the number of interesting points according to the amount of details. Then the popular approach Bag of Video Words is applied with a new normalization technique. This normalization technique remarkably improves the results. Finally a multi class linear Support Vector Machine SVM is utilized for classification. Experiments were conducted on the KTH and Weizmann datasets. The results demonstrate that our approach outperforms most existing methods achieving accuracy of for KTH and for Weizmann. 2013 Production and hosting by Elsevier . on behalf of Cairo University. Introduction Human action recognition is an active area of research due to the wide applications depending on it as detecting certain activities in surveillance video automatic video indexing and retrieval and content based video retrieval. Action representation can be categorized as flow based approaches 1 spatio-temporal shape template based approaches 2 3 tracking based approaches 4 and interest points based approaches 5 . In flow based approaches optical flow computation is used to describe motion it is sensitive to noise and cannot reveal the true motions.

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.