TAILIEUCHUNG - Tóm tắt Luận án tiến sĩ Toán học: Dáng điệu nghiệm của phương trình và bao hàm thức vi phân phân thứ chứa trễ

Mục đích nghiên cứu của đề tài nhằm nghiên cứu dáng điệu nghiệm của một số hệ vi phân phân thứ có trễ theo cách tiếp cận của lý thuyết ổn định. Đầu tiên chúng tôi nghiên cứu tính ổn định của nghiệm đối với lớp phương trình vi tích phân phân thứ bao gồm hiệu ứng xung và điều kiện không cục bộ với trễ hữu hạn. Sau đó, chúng tôi nghiên cứu tính ổn định tiệm cận yếu của nghiệm tầm thường cho bao hàm thức vi tích phân phân thứ chứa trễ vô hạn. Cuối cùng luận án đạt được một số kết quả về tính hút trong khoảng thời gian hữu hạn đối với phương trình sóng phân thứ có trọng, nửa tuyến tính với trễ hữu hạn và phần phi tuyến tăng trưởng trên tuyến tính. | Tóm tắt Luận án tiến sĩ Toán học: Dáng điệu nghiệm của phương trình và bao hàm thức vi phân phân thứ chứa trễ BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI ——————— * ——————— NGUYỄN NHƯ QUÂN DÁNG ĐIỆU NGHIỆM CỦA PHƯƠNG TRÌNH VÀ BAO HÀM THỨC VI PHÂN PHÂN THỨ CHỨA TRỄ Chuyên ngành: Phương trình vi phân và tích phân Mã số: 9 46 01 03 TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC Hà Nội - 2018 Luận án được hoàn thành tại: Trường Đại học Sư phạm Hà Nội Người hướng dẫn khoa học: PGS. TS. Trần Đình Kế TS. Nguyễn Thành Anh Phản biện 1: . Đinh Nho Hào, Viện Toán học. Phản biện 2: PGS. TS. Nguyễn Sinh Bảy, Trường Đại học Thương Mại. Phản biện 3: PGS. TS. Cung Thế Anh, Trường ĐHSP Hà Nội. Luận án sẽ được bảo vệ trước Hội đồng chấm luận án cấp Trường họp tại Trường Đại học Sư phạm Hà Nội vào hồi giờ ngày tháng năm . Có thể tìm hiểu luận án tại thư viện: Thư viện Quốc Gia, Hà Nội hoặc Thư viện Trường Đại học Sư phạm Hà Nội 1 MỞ ĐẦU 1. Tổng quan về vấn đề nghiên cứu và lí do chọn đề tài Giải tích phân thứ được cho là bắt nguồn từ câu hỏi đưa ra vào năm 1695 bởi L´Hospital và Leibniz. Đó là làm thế nào để khái quát hóa các khái niệm của giải tích bậc nguyên cho trường hợp có bậc bất kỳ? Qua lịch sử hơn ba thế kỷ hình thành và phát triển, trong một thời gian dài ta thấy rằng giải tích phân thứ chủ yếu thu hút sự quan tâm của các nhà toán học, do chưa biết nhiều đến các ứng dụng của nó vào trong thực tiễn và các lĩnh vực khoa học khác. Tuy nhiên, trong những thập kỷ gần đây có nhiều nhà nghiên cứu đã dành sự quan tâm cho giải tích phân thứ khi thấy rằng đạo hàm và tích phân phân thứ là công cụ có thể mô tả tốt hơn nhiều hiện tượng trong thế giới tự nhiên và trong kỹ thuật như là: hệ nhớt đàn hồi, sự phân cực chất điện môi, sóng điện từ, sự truyền nhiệt, kỹ thuật chế tạo người máy, hệ sinh học, tài chính và một số lĩnh vực khác (xem Ahmed (2007), Butzer và Hilfer .

TÀI LIỆU LIÊN QUAN
TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.