TAILIEUCHUNG - Một phương pháp định vị đối tượng dựa trên phân lớp có giám sát

Mục đích của bài viết là nghiên cứu và đề xuất một phương pháp dò tìm một đối tượng nào đó trên cơ sở phân lớp có giám sát. Để giải quyết bài toán đặt ra, bài viết đề xuất hai bổ đề được phát triển từ bổ đề của Lý thuyết Thông tin và Thống kê toán và đề xuất một số gợi ý được ứng dụng trong thực hành. | Một phương pháp định vị đối tượng dựa trên phân lớp có giám sát Nghiên cứu khoa học công nghệ MỘT PHƯƠNG PHÁP ĐỊNH VỊ ĐỐI TƯỢNG DỰA TRÊN PHÂN LỚP CÓ GIÁM SÁT Nguyễn Hồng Thủy, Hồ Văn Canh1*, Lê Nhật Thăng2 Tóm tắt: Mục đích của bài báo là nghiên cứu và đề xuất một phương pháp dò tìm một đối tượng nào đó trên cơ sở phân lớp có giám sát. Để giải quyết bài toán đặt ra, bài báo đề xuất hai bổ đề được phát triển từ bổ đề của Lý thuyết Thông tin và Thống kê toán và đề xuất một số gợi ý được ứng dụng trong thực hành. Từ khóa: Phân lớp; Nhận dạng ngôn ngữ; Đặc trưng. 1. MỞ ĐẦU Để định vị một đối tượng nào đó (người, động vật hoặc bất cứ vật thể nào) chúng ta trước hết cần biết được các đặc điểm hay gọi là đặc trưng (characteristic) của đối tượng đó như: Họ và tên, quê quán, ngày tháng năm sinh, tên thường gọi, nghề nghiệp, thường sử dụng thiết bị liên lạc gì ? . Nhưng để xác định được một đối tượng, trước hết ta phải phân lớp đối tượng dựa trên đặc trưng của chúng. Bài toán phân lớp được mô tả như sau: Cho trước một tập hợp hữu hạn các đối tượng, mỗi đối tượng gồm n đặc trưng. Như vậy ta có thể coi là một tập con trong không gian Euclide n-chiều R n . Giả sử trên cơ sở nào đó ta có y R n . Hãy xác định xem có tồn tại một x mà y = x hay không ? Ở đây, ta hiểu khái niệm "y = x" theo nghĩa xác suất. Đây là một bài toán rất lý thú và đã có kết quả được áp dụng trong thực tiễn, đặc biệt là trong lĩnh vực An ninh Quốc gia. 2. MỘT SỐ KẾT QUẢ ĐÃ ĐƯỢC CÔNG BỐ Bài toán phân lớp các đối tượng được ứng dụng nhiều trong nhiều lĩnh vực, đặc biệt là nhận dạng ngôn ngữ tự nhiên (xem [1], [2], [3], [4], [8], [14],.). Các phương pháp nêu trên được các tác giả dựa trên các kỹ thuật sau đây: - Phân lớp trên cơ sở mô hình xích Markov ẩn (HMM), - Phân lớp dựa trên mạng Neural nhân tạo (ANN - Artificial Neural Network), - Phân lớp dựa trên máy học vector hỗ trợ (SVMs), - Phân lớp dựa trên mô hình Gaussian hỗn .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.