TAILIEUCHUNG - Mô hình huấn luyện mạng nơ ron dựa trên ảnh mô phỏng

Trong quá trình khai thác học sâu, người ta dần nhận thấy mối liên hệ mạnh mẽ giữa số lượng dữ liệu đầu vào và độ chính xác của giải thuật. Tuy nhiên trong thực tế, việc lấy dữ liệu cho một số đối tượng cần nhận dạng là phức tạp và rất mất thời gian. Bài viết trình bày việc xây dựng mô hình huấn luyện dựa trên ảnh nhân tạo thông qua việc sử dụng một phần của mạng Inception v3 đã huấn luyện. | Mô hình huấn luyện mạng nơ ron dựa trên ảnh mô phỏng Công nghệ thông tin MÔ HÌNH HUẤN LUYỆN MẠNG NƠ-RON DỰA TRÊN ẢNH MÔ PHỎNG Đặng Hoàng Minh*, Phạm Văn Lai Tóm tắt: Ngày nay, việc ứng dụng Deep Learning trong xử lý ảnh đã ngày một phổ biến. Trong quá trình khai thác học sâu, người ta dần nhận thấy mối liên hệ mạnh mẽ giữa số lượng dữ liệu đầu vào và độ chính xác của giải thuật. Tuy nhiên trong thực tế, việc lấy dữ liệu cho một số đối tượng cần nhận dạng là phức tạp và rất mất thời gian. Nhằm giải quyết vấn đề đấy, việc học dựa trên dữ liệu mô phỏng trở thành vấn đề được nhiều nhóm nghiên cứu quan tâm. Trong bài báo này, chúng tôi xây dựng mô hình huấn luyện dựa trên ảnh nhân tạo thông qua việc sử dụng một phần của mạng Inception v3 đã huấn luyện. Từ khóa: Deep learning (học sâu), Mạng nơ-ron, Mạng nơ-ron tích chập. 1. MỞ ĐẦU Deep Learning là một mô hình mạnh mẽ cho bài toán nhận dạng đối tượng từ ảnh. Tuy nhiên, nó có một nhược điểm là đỏi hỏi lượng dữ liệu quá lớn. Do đó, nhu cầu học dựa trên ảnh mô phỏng được đề ra. Lý do là vì việc tạo ra ảnh mô phỏng đơn giản hơn nhiều so với việc thu thập ảnh thật. Một số nhóm nghiên cứu đã tiến hành thử nghiệm, tuy nhiên, kết quả còn khiêm tốn và chưa thể ứng dụng rộng rãi. Một số nghiên cứu có thể kể đến như sau: - “Học dựa trên ảnh mô phỏng, không giám sát thông qua huấn luyện đối nghịch” [1]. Ý tưởng của công trình này là xây dựng một mạng đối nghịch (Generative Adversarial Network – GAN) [8] có khả năng tinh chỉnh ảnh mô phỏng sao cho nó giống với ảnh thật. Ảnh sau khi được tinh chỉnh có thể sử dụng làm dữ liệu đầu vào cho các mô hình mạng nơ-ron nhận dạng đối tượng. Tuy nhiên, mô hình này mới chỉ ứng dụng với các đối tượng đơn giản(như mắt người). - “Huấn luyện phân loại đối tượng dựa trên dữ liệu nhân tạo thông qua việc sử dụng một autoencoder đa kênh” [2]. Tư tưởng của phương pháp này là sử dụng một autoencoder đa kênh được huấn luyện bởi đồng thời cả .

TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.