TAILIEUCHUNG - Fuzzy logic and T-test for load forecasting

This paper applied fuzzy rules to approximate the relationship between loads and other factors using the subtractive clustering. The implementation is carried out for one substation in Ho Chi Minh city. Results show that the proposed approach gives better accuracycy of forecasting, and the effort of finding crisp function for forecasting is not helping to have better results. | Journal of Science & Technology 131 (2018) 001-005 Fuzzy Logic and T-Test for Load Forecasting Phan Thi Thanh Binh1, Dinh Xuan Thu1, Vo Viet Cuong2,* 1 HCMC University of Technology, No. 268 Ly Thuong Kiet Street, District 10, HCMC, Vietnam HCMC University of Technology and Education, No. 1 Vo Van Ngan Street, HCMC, Vietnam Received: October 03, 2017; Accepted: November 26, 2018 2 Abstract The forecasting models based on regression function have the analytic form with proving that there is some rule expressing the correlation between forecasting value and other related fators. In reality, forecasted load is not always in linear form of factors, such as: temperature, population, GDP or historical load data. This paper applied fuzzy rules to approximate the relationship between loads and other factors using the subtractive clustering. The implementation is carried out for one substation in Ho Chi Minh city. Results show that the proposed approach gives better accuracycy of forecasting, and the effort of finding crisp function for forecasting is not helping to have better results. Keywords: subtractive clustering, fuzzy rule, correlation, T-test, load forecasting 1. Introduction* Their method is based on gridding the data space and computing a potential value for each grid point. Although this method is simple and effective, the computation grows exponentially with the dimension of the problem. Chiu [5] proposed an extension of Yager and Filev’s mountain method, called subtractive clustering, in which each data point, rather than the grid point, is considered as a potential cluster center. Using this method, the number of effective “grid points” to be evaluated is simply equal to the number of data points, independent of the dimension of the problem. By tradition, the forecasting models in regression function have an analytic form, such as Y = f(x1, x2, ., xn) or logY = f(logx1, logx2, ., logxn). These models are linear and are used only when the linear .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.