TAILIEUCHUNG - Lecture Discrete structures: Chapter 21 - Amer Rasheed

In this chapter, the following content will be discussed: Inverse functions, finding an inverse function, composition of functions, composition of functions, composition of functions defined on finite sets, plotting functions. | (CSC 102) Lecture 21 Discrete Structures Previous Lecture Summery Sum/Difference of Two Functions Equality of Two Functions One-to-One Function Onto Function Bijective Function (One-to-One correspondence) Today’s Lecture Inverse Functions Finding an Inverse Function Composition of Functions Composition of Functions Composition of Functions defined on finite sets Plotting Functions Inverse Functions Theorem The function F-1 is called inverse function. Inverse Functions Given an arrow diagram for a function. Draw the arrow diagram for the inverse of this function Finding an Inverse Function The function f : R → R defined by the formula f (x) = 4x − 1, for all real numbers x Theorem Composition of Functions Composition of Functions defined on finite sets Let X = {1, 2, 3}, Y ’ = {a, b, c, d}, Y = {a, b, c, d, e}, and Z = {x, y, z}. Define functions f : X → Y’ and g: Y → Z by the arrow diagrams below. Draw the arrow diagram for g ◦ f . What is the range of g ◦ f ? Composition of Functions defined on finite sets To find the arrow diagram for g ◦ f , just trace the arrows all the way across from X to Z through Y . The result is shown below. Composition of Functions defined on finite sets Let X = {1, 2, 3}, Y ’ = {a, b, c, d}, Y = {a, b, c, d, e}, and Z = {x, y, z}. The range of g ◦ f is {y, z}. Composition of Functions defined on Infinite Sets Let f : Z → Z, and g: Z → Z be two functions. ., f (n)=n + 1 for all n ∈ Z and g(n) = n2 for all n ∈ Z. a. Find the compositions g◦f and f◦g. b. Is g ◦ f = f ◦g? Explain. The functions g ◦ f and f ◦g are defined as follows: (g ◦ f )(n) = g( f (n)) = g(n + 1) = (n + 1)2 for all n ∈ Z, ( f ◦g)(n) = f (g(n)) = f (n2) = n2 + 1 for all n ∈ Z. Composition of Functions defined on Infinite Sets Let f : Z → Z, and g: Z → Z be two functions. ., f (n)=n + 1 for all n ∈ Z and g(n) = n2 for all n ∈ Z. b. Is g ◦ f = f ◦g? Explain. Composition with Identity Function Let X = {a, b, c, d} and Y = {u, v,w}, and suppose f : X → Y is given by .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.