TAILIEUCHUNG - Khảo sát một số giải thuật tiến hóa giải bài toán tối ưu số

Bài báo này tổng hợp những nét cơ bản của các thuật toán: Giải thuật di truyền (GA), chiến lược tiến hoá (ES - Evolution Straitegy) và giải thuật mô phỏng tôi luyện (SA). Các kết quả thử nghiệm cả 3 thuật toán trên cho một số hàm nhiều biến nhằm rút ra những điểm mạnh của từng thuật toán đối với mỗi loại bài toán cụ thể. | T¹p chÝ Khoa häc & C«ng nghÖ - Sè 3(43)/N¨m 2007 KHẢO SÁT MỘT SỐ GIẢI THUẬT TIẾN HOÁ GIẢI BÀI TOÁN TỐI ƯU SỐ Vũ Mạnh Xuân (Khoa KH Tự nhiên & X ã hội - Đại học Thái Nguyên) 1. Mở đầu Các bài toán tối ưu số có nhiều ứng dụng thực tế và đã được nghiên cứu từ lâu. Trong các kỹ thuật tính toán mềm, thuật toán di truyền (GA – Genetic Algorithm) với các biến thể của nó và thuật toán mô phỏng tôi luyện (SA – Simulated Annealing) là những thuật toán chủ yếu sử dụng để giải các bài toán tối ưu. Một cách tổng quát, một bài toán tối ưu số có thể xem là một cặp (S, f), trong đó S ⊆ Rn và f : S → R là một hàm n biến. Bài toán đặt ra là tìm véc tơ x = (x1, x2, . , xn) ∈ S sao cho f(x) đạt giá trị cực tiểu trên S, nghĩa là với mọi y ∈ S phải có f(x) ≤ f(y). Hàm f ở đây có thể không liên tục nhưng cần bị chặn trên S. Bài báo này tổng hợp những nét cơ bản của các thuật toán: Giải thuật di truyền (GA), chiến lược tiến hoá (ES - Evolution Straitegy) và giải thuật mô phỏng tôi luyện (SA). Các kết quả thử nghiệm cả 3 thuật toán trên cho một số hàm nhiều biến nhằm rút ra những điểm mạnh của từng thuật toán đối với mỗi loại bài toán cụ thể. Bài báo được cấu trúc như sau: Phần kế tiếp trình bày khái quát các thuật toán cơ bản đã nêu. Sau đó là kết quả thử nghiệm các thuật toán này cho một số hàm cụ thể. Phần cuối cùng là một số nhận xét và kết luận. 2. Các thuật toán cơ bản Thuật toán di truyền (GA - Genetic Algorithm) Thuật toán di truyền (GA) và các biến thể của nó đã được phát triển rất mạnh trong những năm gần đây. GA mô phỏng quá trình tiến hoá tự nhiên và sử dụng các thuật ngữ thông dụng của tự nhiên như lai ghép, đột biến, . . GA cổ điển sử dụng mã hoá nhị phân, mỗi nhiễm sắc thể được mã hoá bởi một chuỗi bít nhị phân. Các toán tử sử dụng trong quá trình tiến hoá gồm chọn lọc, lai ghép và đột biến. Trong các bài toán tối ưu hàm nhiều biến, GA thường được sử dụng chủ yếu với mã hoá số thực (RCGA _ Real Coded Gêntic Algorithm). Mỗi nhiễm sắc thể được mã hoá bởi một véc tơ gồm n

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.