TAILIEUCHUNG - Interaction between linear and cubic parametric excitations

In the present paper, the same system will be examined in the case general, assuming that there exists certain phase shift between two parametric excitations. As it will be shown, the form of the resonance curve is diversity and can be classified by using critical representative points. | Vietnam Journal of Mechanics, NCNST of Vietnam T. XX, 1998, No 4 (20- 29) INTERACTION BETWEEN LINEAR AND CUBIC PARAMETRIC EXCITATIONS NGUYEN VAN DINH - TRAN KIM CHI Institute of Mechanics In [1], a quasi-linear oscillating system with non linear restoring element harmonically depending on time has been studied. The mentioned element is represented by two terms-the linear and the cubic. We can consider the system examined as the one subjected to two parametric excitations. The oscillations thus result from the interaction between theiie two excitations. In the present paper, the same system will be examined in the case general, assuming that there exists certain phase shift between two parametric excitations. As it will be shown, the form of the resonance curve is diversity and can be classified by using critical representative points [2]. §l System under consideration and equations of stationary osdllations Let us consider a quasilinear system described by the differential equation: x+w 2 x = e:{ h± -,x3 + 2pxcos2wt+2qx3 cos2(wt +a)}. () where: x-oscillatory variable; h ~ 0-damping coefficient; 2p > 0, 2q > 0-intensities of linear and cubic parametric excitations, respectively; 2w-common frequency; 2a (0 :::; 2a 0-small parameter; 0 (system with damping), the two compatibility conditions are only satisfied at I the compatible ensemble is reduced to I. At this unique compatible point I, () is always satisfied, but (} requires: () 23 So, I is only critical if the damping is weak enough. In Fig. 1, the resonance curves have been plotted for fixed values u = 11' /2; p = , q = , "/ = and for various values of h. The point I, the segment J 1 J 2 and two straight-lines--(-1-)---ferm-theresenance curve of the system with aut damping (h = 0). The resonance curves (2), (3) correspond to h = ; h = respectively. We see that, for h > 0 (system with damping), the critical segment J 1 h disappears and the resonance curve .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.