TAILIEUCHUNG - Bài giảng Toán học sơ cấp: Phần 2 - TS. Nguyễn Viết Đông

Bài giảng Toán học sơ cấp: Phần 2 được biên soạn nhằm mục đích giúp cho người học nắm được các kiến thức về vị từ và lượng từ thông qua từng định nghĩa và những ví dụ minh họa trong bài học. Để hiểu và nắm rõ nội dung bài giảng, . | Vị từ và lượng từ • Định nghĩa: Cho A là một tập hợp khác rỗng. Giả sử, ứng với mỗi x = a A ta có một mệnh đề p(a). Khi đó, ta nói p = p(x) là một vị từ theo một biến (xác định trên A) : Phần II Vị từ và lượng từ 1 Vị từ và lượng từ 2 Predicates and Quantifiers • Định nghĩa: Tổng quát, cho A1, A2, A3 là n tập hợp khác trống. Giả sử rằng ứng với mỗi (x1,x2,.,xn) = (a1,a2,.,an) A1 A2 . An, ta có một mệnh đề p(a1,a2,.,an). Khi đó ta nói p = p(x1,x2,.,xn) là một vị từ theo n biến(xác định trên A1 A2 . An) 3 Propositional functions or predicates are propositions which contain variables Example Let P denote the Predicate “is greater than 0” and P(x) denote “x > 0” x is called a variable The predicate become a proposition once the variable x has been assigned a value. Example What is the truth value of p(5), p(0) and p(-2)? “5>0” is true, “0>0” is false and “-2>0” is false 4 1 Vị từ và lượng từ Vị từ và lượng từ • Ví dụ 1: Xét p(n) = “n > 2” là một vị từ một biến xác định trên tập các số tự nhiên N. Ta thấy với n = 3; 4 ta được các mệnh đề đúng p(3), p(4), còn với n = 0,1 ta được mệnh đề sai p(0), p(1). • Ví dụ 2 Xét p(x,y) = “x2 + y = 1” là một vị từ theo hai biến xác định trên R2, ta thấy p(0,1) là một mệnh đề đúng, trong khi p(1,1) là một mệnh đề sai. 5 6 Vị từ và lượng từ Examples • Định nghĩa: Cho trước các vị từ p(x), q(x) theo một biến x A. Khi ấy, Example: Let Q(x,y) denote the statement “y =x + 2”. What is the truth value of Q(2,4,) and Q(4, 1) “4 = 2+2” is true and “1 = 4+2” is false – Phủ định của vị từ p(x) kí hiệu là p(x) là vị từ mà khi thay x bởi một phần tử cố định của A thì ta được mệnh đề (p(a)) – Phép nối liền(tương ứng nối rời, kéo theo ) của p(x) và q(x) được ký hiệu bởi p(x) q(x)( tương ứng là p(x) q(x), p(x) q(x)) là vị từ theo biến x mà khi thay x bởi phần tử cố định a của A ta được mệnh đề p(a) q(a) ( tương ứng là p(a) q(a), p(a) q(a)) Q(2,y) Q(0,3) is a proposition??? Q(1,3) Q(0,1) is a .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.