TAILIEUCHUNG - Support vector machines in wood identification: The case of three Salix species from Turkey

The aim of this study was to use a support vector machine (SVM) for the first time as a predictive method for differentiating species of Salix wood through the biometric analysis of their anatomy using wood taken from basal disks of 3 species. | Turkish Journal of Agriculture and Forestry Research Article Turk J Agric For (2013) 37: 249-256 © TÜBİTAK doi: Support vector machines in wood identification: the case of three Salix species from Turkey 1, 1 2 Kemal TURHAN *, Bedri SERDAR Department of Medical Informatics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey 2 Faculty of Forestry, Karadeniz Technical University, Trabzon, Turkey Received: Accepted: Published Online: Printed: Abstract: The aim of this study was to use a support vector machine (SVM) for the first time as a predictive method for differentiating species of Salix wood through the biometric analysis of their anatomy using wood taken from basal disks of 3 species. The purpose of a SVM is to construct optimal decision boundaries among classes in a decision plane. A decision plane separates a set of objects having different class memberships. In this study, the decision plane has 3 different wood species. Timely and accurate identification of tree species can be crucial in forestry. The similarity of structures in wood anatomy across many species, especially in the case of Salix species, means that they cannot be differentiated anatomically using traditional methods. SVM can be an effective tool for identifying similar taxa with a high percentage of accuracy. A SVM was used to differentiate Salix alba, Salix caprea, and Salix elaeagnos growing in Turkey. These Salix species are sufficiently similar that it is not possible to differentiate between them using traditional anatomical methods. However, a SVM was able to differentiate between the 3 species with a high degree of probability using the biometrics of wood anatomy. For the purposes of classification, a SVM with linear kernel function was designed; it attained an success rate in the training group and a success rate in the testing group. After

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.