TAILIEUCHUNG - Investigation in loading 5- fluorouracil ability of iron organic frameworks

The results showed that the MIL-53(Fe), MIL-88(Fe), and MIL-100(Fe) are capable of carrying 5-FU with capacity exceeding g/g, g/g, g/g respectively and mostly released after 10 days. The cancer cell toxicity and slow drug release ability of MIL(Fe)@5-FU were also tested by in-vitro method. Iron-organic frameworks are promising materials for cancer treatment. | Vietnam Journal of Science and Technology 56 (3B) (2018) 219-227 INVESTIGATION IN LOADING 5-FLUOROURACIL ABILITY OF IRON-ORGANIC FRAMEWORKS Hoai Phuong Nguyen Thi*, Duc Ha Ninh Institute of Chemistry and Materials, 17 Hoang Sam, Cau Giay, Ha Noi * Email: hoaiphuong1978@ Received: 16 July 2018; Accepted for publication: 7 September 2018 ABSTRACT Materials MIL-53(Fe), MIL-88(Fe) and MIL-100(Fe) have the ability to absorb many different compounds. In addition, the materials are small in size, highly bio-compatible, with no human toxicity. These materials were chosen to carry 5-fluorouracil (5-FU) for cancer treatment. Synthetic materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface characteristics (BET). 5-FU loading and releasing ability of MIL53(Fe), MIL-88(Fe) and MIL-100(Fe) have been investigated by UV-Vis spectrophotometer. The results showed that the MIL-53(Fe), MIL-88(Fe), and MIL-100(Fe) are capable of carrying 5-FU with capacity exceeding g/g, g/g, g/g respectively and mostly released after 10 days. The cancer cell toxicity and slow drug release ability of MIL(Fe)@5-FU were also tested by in-vitro method. Iron-organic frameworks are promising materials for cancer treatment. Keywords: MIL-53 (Fe), MIL-88 (Fe), MIL-100 (Fe), drug delivery, 5-FU, cancer treatment. 1. INTRODUCTION The 5-fluorouracil molecule (C4H3FN2O2) of molar mass g is relatively small. Because it contains both hydrogen bond donors and acceptors (N-H and C=O groups) it has the ability to shape co-crystals or salts after combination with other molecules, that could enhance the biological properties. 5-Fluorouracil (5-FU) is a chemotherapeutic agent employed in the treatment of several solid, such as breast, colorectal, and head and neck cancers. It has a broad spectrum of activity against various types of cancer and has a mode of action based on interfering with thymidylate synthesis. This leads to apoptosis in

TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.