TAILIEUCHUNG - Pedestrian activity prediction based on semantic segmentation and hybrid of machines

The article presents an advanced driver assistance system (ADAS) based on a situational recognition solution and provides alert levels in the context of actual traffic. The solution is a process in which a single image is segmented to detect pedestrians’ position as well as extract features of pedestrian posture to predict the action. | Journal of Computer Science and Cybernetics, , (2018), 113–125 DOI PEDESTRIAN ACTIVITY PREDICTION BASED ON SEMANTIC SEGMENTATION AND HYBRID OF MACHINES DIEM-PHUC TRAN1 , VAN-DUNG HOANG2,a , TRI-CONG PHAM3 , CHI-MAI LUONG3,4 1 Duy Tan University Binh University 3 ICTLab, University of Science and Technology of Hanoi 4 Institute of Information Technology, VAST a dunghv@ 2 Quang Abstract. The article presents an advanced driver assistance system (ADAS) based on a situational recognition solution and provides alert levels in the context of actual traffic. The solution is a process in which a single image is segmented to detect pedestrians’ position as well as extract features of pedestrian posture to predict the action. The main purpose of this process is to improve accuracy and provide warning levels, which supports autonomous vehicle navigation to avoid collisions. The process of the situation prediction and issuing of warning levels consists of two phases: (1) Segmenting in order to definite the located pedestrians and other objects in traffic environment, (2) Judging the situation according to the position and posture of pedestrians in traffic. The accuracy rate of the action prediction is and the speed is 5 frames per second. Keywords. Autonomous vehicle, deep learning, feature extraction, object detection, pedestrian recognition, semantic segmentation. 1. INTRODUCTION Nowadays, recognition technology on autonomous vehicle (AV) is widely applied in real life. For AV, basic objects have been recognized with high accuracy and specific handling situations. However, of all subjects interacting with AVs in actual traffic, pedestrians are considered to be the most difficult to identify and handle. Consequently, the combination of multiple methods to improve the efficiency in predicting and conducting different levels of classification is absolutely necessary. When a pedestrian joins traffic on the road, .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.