TAILIEUCHUNG - Ứng dụng một số phương pháp xây dựng hàm phân loại trong cảnh báo sớm nguy cơ vỡ nợ của các ngân hàng thương mại cổ phần Việt Nam
Trong nghiên cứu này vận dụng các mô hình thống kê dựa trên phân tích khác biệt đa biến, hồi qui logistic và máy vecto hỗ trợ (SVM) để xây dựng các hàm phân loại nhằm cảnh báo rủi ro sớm cho các ngân hàng thương mại cổ phần (NHTMCP) Việt Nam. Các mô hình được thực hiện trên các nhóm thuộc tính như: khả năng sinh lời, các chỉ số thâm hụt, hiệu quả quản lí tài sản, chất lượng tài sản, mức độ an toàn, nhóm chỉ số tăng trưởng bền vững và tính thanh khoản. | Tạp chí Khoa học Nông nghiệp Việt Nam 2018, 16(7): 698-706 Vietnam J. Agri. Sci. 2018, Vol. 16, No. 7: 698-706 ỨNG DỤNG MỘT SỐ PHƯƠNG PHÁP XÂY DỰNG HÀM PHÂN LOẠI TRONG CÂNH BÁO SỚM NGUY CƠ VỠ NỢ CỦA CÁC NGÂN HÀNG THƯƠNG MẠI CỔ PHẦN VIỆT NAM Nguyễn Thị Lan*, Đỗ Thị Nhâm, Ngọc Minh Châu, Lê Văn Hỗ Khoa Công nghệ thông tin, Học viện Nông nghiệp Việt Nam * Tác giả liên hệ: ngtlan@ Ngày gửi bài: Ngày chấp nhận: TÓM TẮT Trong nghiên cứu này chúng tôi vận dụng các mô hình thống kê dựa trên phân tích khác biệt đa biến, hồi qui logistic và máy vecto hỗ trợ (SVM) để xây dựng các hàm phân loại nhằm cảnh báo rủi ro sớm cho các ngân hàng thương mại cổ phần (NHTMCP) Việt Nam. Các mô hình được thực hiện trên các nhóm thuộc tính như: khả năng sinh lời, các chỉ số thâm hụt, hiệu quả quản lí tài sản, chất lượng tài sản, mức độ an toàn, nhóm chỉ số tăng trưởng bền vững và tính thanh khoản. Nghiên cứu tính toán độ chính xác của các mô hình nghiên cứu trên cả tập dữ liệu và kiểm tra, ngoài ra còn đưa ra các loai sai lầm loại I, sai lầm loại II mà các mô hình mắc phải Từ khóa: Ngân hàng thương mại, cảnh báo nguy cơ vỡ nợ, hàm phân loại. Application of Some Methods for Building Classification Functions in Early Warning of Default Risk for Vietnam Joint Stock Commercial Banks ABSTRACT In our study, we used statistical models based on multivariate linear discriminant analysis, logistic regression and SVM methods to construct bank classification functions for early risk warning for Vietnam joint stock commercial banks The models were built on attribute groups such as profitability, deficit indicators, asset management efficiency, asset quality, safety level, sustainable growth rate and liquidity. The study calculates the accuracy of the research models on both data sets and tests, in addition to the types of mistakes of type I, mistakes of type II that models suffer from. Keywords: Commercial banks, early warning, default risk, .
đang nạp các trang xem trước