TAILIEUCHUNG - Lecture VLSI Digital signal processing systems: Chapter 10 - Keshab K. Parhi

Chapter 10 introduce the pipelined and parallel pecursive and adaptive filters. This chapter includes content: Pipelining in 1st-Order IIR Digital Filters, Pipelining in Higher-Order IIR Digital Filters, Parallel Processing for IIR Filters, Combined Pipelining and Parallel Processing for IIR Filters. | Chapter 10: Pipelined and Parallel Recursive and Adaptive Filters Keshab K. Parhi Outline • • • • • Introduction Pipelining in 1st-Order IIR Digital Filters Pipelining in Higher-Order IIR Digital Filters Parallel Processing for IIR Filters Combined Pipelining and Parallel Processing for IIR Filters Chapter 10 2 Look-Ahead Computation First-Order IIR Filter • Consider a 1st-order linear time-invariant recursion (see Fig. 1) () y(n +1) = a ⋅ y(n) + b ⋅ u(n) • The iteration period of this filter is { m +Ta}, where { m,Ta} represent T T word-level multiplication time and addition time • In look-ahead transformation, the linear recursion is first iterated a few times to create additional concurrency. • By recasting this recursion, we can express y(n+2) as a function of y(n) to obtain the following expression (see Fig. 2(a)) () y(n + 2) = a[ay(n) + bu(n)] + bu(n + 1) • The iteration bound of this recursion is 2 (Tm + Ta ) 2 , the same as the original version, because the amount of computation and the number of logical delays inside the recursive loop have both doubled Chapter 10 3 • Another recursion equivalent to () is (). Shown on (b), its iteration bound is (Tm + Ta ) 2 , a factor of 2 lower than before. () y(n + 2) = a2 ⋅ y(n) + ab⋅ u(n) + b ⋅ u(n + 1) • Applying (M-1) steps of look-ahead to the iteration of (), we can obtain an equivalent implementation described by (see Fig. 3) M −1 y ( n + M ) = a M ⋅ y ( n) + ∑ a i ⋅ b ⋅ u ( n + M − 1 − i) () −M i=0 – Note: the loop delay is z instead of z −1 , which means that the loop computation must be completed in M clock cycles (not 1 clock cycle). The iteration bound of this computation is Tm + Ta M , which corresponds to a sample rate M times higher than that of the original filter – The terms ab , a 2 b ,⋅ ⋅ ⋅, a M −1b , a M in () can be pre-computed (referred to as pre-computation terms). The second term in RHS of () is the look-ahead computation term (referred to as

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.