TAILIEUCHUNG - Đặc trưng của mầm ánh xạ không suy biến

Bài viết trình bày mối quan hệ giữa tập Lagarange r-cubic và mầm ánh xạ reticular không suy biến, cấu hình r-cube chính quy, cấu hình không gian các tia có đối hạng corank = 1 và mô hình địa phương của ánh xạ reticular. Để nắm nội dung . | Trường Đại học Thủy sản Tạp chí Khoa học - Công nghệ Thủy sản Số 2/2006 ĐẶC TRƯNG CỦA MẦM ÁNH XẠ KHÔNG SUY BIẾN Ths. Phạm Gia Hưng Khoa Khoa học Cơ bản I. MỞ ĐẦU Việc nghiên cứu lý thuyết kỳ dị là hết sức quan trọng trong lý thuyết cũng như trong ứng dụng, đặc biệt là ứng dụng để tìm những lời giải của các hệ phương trình holonomic có đa tạp đặc trưng gồm nhiều thành phần. Mục đích của bài viết là trình bày quan hệ giữa “tập Lagrange r -cubic” và “mầm ánh xạ reticular không suy biến”. II. NỘI DUNG 1. Cấu hình r-cube chính quy Giả sử W là mầm đa tạp giải tích phức có chiều ≥n+r, với n,r cố định. Cho V là một mầm tập con giải tích của W được cho bởi V = {u1v1 = . = ur v r = ur +1 = . = un = 0} trong đó u1,.,un ,v1,.,v r là các mầm hàm giải tích với du1,.,dun ,dv1,.,dvr độc lập tuyến tính. r Khi đó ta thấy V hợp bởi 2 thành phần trơn Vσ , σ ∈ P (Ir ),Ir = {1,.,n} như sau { } Vσ = ui = 0 khi i ∈ σ & v j = 0 khi j ∈ Ir \ σ trong đó P(Ir) là tập tất cả các bộ phận của Ir. Ta xem P(Ir) như một hình hộp (cube) r chiều {0,1}I bằng cách đồng nhất mọi σ∈P(Ir) với hàm đặc trưng của nó; mọi mặt Ω của cube được xác định bởi r { } Ω = Ω ( P ) = Ω(σ, σ) = σ ∈ P(Ir )

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.