TAILIEUCHUNG - Ebook Pocket companion to guyton and hall textbook of medical physiology (13/E): Part 2

(BQ) Part 2 book “Pocket companion to guyton and hall textbook of medical physiology” has contents: Aviation, space, and deep-sea diving physiology; the nervous system - general principles and sensory physiology; motor and integrative neurophysiology, gastrointestinal physiology, metabolism and temperature regulation, and other contents. | UNIT VIII Aviation, Space, and Deep-Sea Diving Physiology 44 Aviation, High Altitude, and Space Physiology, 321 45 Physiology of Deep-Sea Diving and Other Hyperbaric Conditions, 326 This page intentionally left blank       CHAPTER 44 Aviation, High Altitude, and Space Physiology Aeronautical advancements have made it increasingly more important to understand the effects of altitude, low gas pressures, and other factors—such as acceleratory forces and weightlessness—on the human body. This chapter discusses each of these problems. EFFECTS OF LOW OXYGEN PRESSURE ON THE BODY (p. 561) A Decrease in Barometric Pressure Is the Basic Cause of High-Altitude Hypoxia. Note in Table 44–1 that as altitude increases, both barometric pressure and atmospheric partial pressure of oxygen (Po2) decrease proportionately. The reduction in alveolar Po2 is further reduced by carbon dioxide and water vapor. • Carbon dioxide. The alveolar partial pressure of carbon dioxide (Pco2) falls from a sea level value of 40 mm Hg to lower values as the altitude increases. In an acclimatized person with a fivefold increase in ventilation, the Pco2 can be as low as 7 mm Hg because of the increases in ventilation. • Water vapor pressure. In the alveoli, water vapor pressure remains at 47 mm Hg as long as the body temperature is normal, regardless of altitude. Carbon Dioxide and Water Vapor Pressure Reduce the Alveolar Oxygen Tension. The barometric pressure is 253 mm Hg at the top of 29,028-foot Mount Everest; 47 mm Hg must be water vapor, leaving 206 mm Hg for other gases. In an acclimatized person, 7 mm Hg of the 206 mm Hg must be carbon dioxide, leaving 199 mm Hg. If there were no use of oxygen by the body, one fifth of this 199 mm Hg would be oxygen and four fifths would be nitrogen, or the Po2 in the alveoli would be 40 mm Hg. However, some of this alveolar oxygen is normally absorbed by the blood, leaving an alveolar Po2 of about 35 mm Hg. Breathing Pure Oxygen Increases .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.