TAILIEUCHUNG - Lecture Introductory econometrics for finance – Chapter 4: Further development and analysis of the classical linear regression model

In this chapter, you will learn how to: Construct models with more than one explanatory variable, test multiple hypotheses using an F-test, determine how well a model fits the data, form a restricted regression, derive the OLS parameter and standard error estimators using matrix algebra, estimate multiple regression models and test multiple hypotheses in EViews. | Chapter 4 Further development and analysis of the classical linear regression model ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 1 Generalising the Simple Model to Multiple Linear Regression • Before, we have used the model yt = α + βxt + ut t = 1,2,.,T • But what if our dependent (y) variable depends on more than one independent variable? For example the number of cars sold might plausibly depend on 1. 2. 3. 4. the the the the price of cars price of public transport price of petrol extent of the public’s concern about global warming • Similarly, stock returns might depend on several factors. • Having just one independent variable is no good in this case - we want to have more than one x variable. It is very easy to generalise the simple model to one with k − 1 regressors (independent variables). ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 2 Multiple Regression and the Constant Term • Now we write yt = β1 + β2 x2t + β3 x3t + . + βk xkt + ut , t=1,2,., T • Where is x1 ? It is the constant term. In fact the constant term is usually represented by a column of ones of length T: 1 1 x1 = · · · 1 β1 is the coefficient attached to the constant term (which we called α before). ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 3 Different Ways of Expressing the Multiple Linear Regression Model • We could write out a separate equation for every value of t: y1 = β1 + β2 x21 + β3 x31 + · · · + βk xk1 + u1 y2 = β1 + β2 x22 + β3 x32 + · · · + βk xk2 + u2 . yT . = . . β1 + β2 x2T + β3 x3T + · · · + βk xkT + uT • We can write this in matrix form y = Xβ + u where: y is T × 1 X is T × k β is k × 1 ‘Introductory Econometrics for Finance’ c Chris Brooks 2013 u is T × 1 4 Inside the Matrices of the Multiple Linear Regression Model • . if k is 2, we have 2 regressors, one of which is a column of ones: y1 y2 . . . yT 1 1 = . . . T .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.