TAILIEUCHUNG - Existence of solutions for a first-order nonlocal boundary value problem with changing-sign nonlinearity

This work is concerned with the existence of positive solutions to a nonlinear nonlocal first-order multipoint problem. Here the nonlinearity is allowed to take on negative values, not only positive values. | Turk J Math (2015) 39: 556 – 563 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article Existence of solutions for a first-order nonlocal boundary value problem with changing-sign nonlinearity ˙ Erbil C ¸ ETIN, Fatma Serap TOPAL∗ ˙ Department of Mathematics, Ege University, Bornova, Izmir, Turkey Received: • Accepted/Published Online: • Printed: Abstract: This work is concerned with the existence of positive solutions to a nonlinear nonlocal first-order multipoint problem. Here the nonlinearity is allowed to take on negative values, not only positive values. Key words: Positive solution, nonlinear boundary condition, sign-changing problem 1. Introduction In this paper, we are interested in the existence of positive solutions for the following first-order m-point nonlocal boundary value problem: ∑n y ′ (t) + p(t)y(t) = i=1 fi (t, y(t)), t ∈ [0, 1], ∑m y(0) = y(1) + j=1 gj (tj , y(tj )), () () where p : [0, 1] → [0, ∞) is continuous, the nonlocal points satisfy 0 ≤ t1 0 such that fi (t, y) > −M for all ∫1 (t, y) ∈ [0, 1] × [0, ∞) and 0 (fi + M )ds > 0 . If there exist positive constants r and R such that r > 2M γ 2 and the following conditions are satisfied: ∫1 1 − e− 0 (A1 )fi (t, u) ≤ fi (t, v) ≤ 2n (A2 ) where γ = 1 − e− e 1 − e− 1+e 558 − ∫1 0 ∫1 0 ∫1 ∫1 0 0 p(ξ)dξ p(ξ)dξ p(ξ)dξ p(ξ)dξ e− ∫1 0 p(ξ)dξ R − M, t ∈ [0, 1], ∫1 r ≤ u ≤ v ≤ R, 2 r 1 − e− 0 p(ξ)dξ ≤ gj (t, u) ≤ gj (t, v) ≤ R, t ∈ [0, 1], m 2m p(ξ)dξ r ≤ u ≤ v ≤ R, 2 , then the boundary value problem () − () has positive solutions. ˙ and TOPAL/Turk J Math C ¸ ETIN Proof First we consider the following boundary value problem: ′ u (t) + p(t)u(t) = n ∑ t ∈ [0, 1], Fi (t, ux (t)), () i=1 u(0) = u(1) + m ∑ gj (tj , ux (tj )), () j=1 where Fi (t, ux (t)) = fi (t, ux (t)) + M and ux (t) = max{(u − x)(t), 0} such that x(t) = M ω(t) and ω(t) .

TÀI LIỆU LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
54    139    1    22-11-2024
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.