TAILIEUCHUNG - New oscillation tests and some refinements for first-order delay dynamic equations

In this paper, we present new sufficient conditions for the oscillation of first-order delay dynamic equations on time scales. We also present some examples to which none of the previous results in the literature can apply. | Turk J Math (2016) 40: 850 – 863 ¨ ITAK ˙ c TUB ⃝ Turkish Journal of Mathematics doi: Research Article New oscillation tests and some refinements for first-order delay dynamic equations 1 2 ¨ ¨ Ba¸sak KARPUZ1,∗, Ozkan OCALAN ˙ Department of Mathematics, Faculty of Science, Tınaztepe Campus, Dokuz Eyl¨ ul University, Buca, Izmir, Turkey 2 Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey Received: • Accepted/Published Online: • Final Version: Abstract: In this paper, we present new sufficient conditions for the oscillation of first-order delay dynamic equations on time scales. We also present some examples to which none of the previous results in the literature can apply. Key words: Oscillation, delay dynamic equations, time scales 1. Introduction In this paper, we study the oscillation of the solution to the first-order delay dynamic equation x∆ (t) + p(t)x(τ (t)) = 0 for t ∈ [t0 , ∞)T , (1) where T is a time scale unbounded above with t0 ∈ T . We discuss (1) under the following assumptions. (C1) p ∈ Crd ([t0 , ∞)T , R+ ) . (C2) τ ∈ Crd ([t0 , ∞)T , T) is nondecreasing and satisfies the following conditions: (a) τ σ (t) ≤ t for all t ∈ [t0 , ∞)T . (b) limt→∞ τ (t) = ∞ . Before we proceed, let us recall some basic notions of the time scale concept. A time scale, which inherits the standard topology on R, is a nonempty closed subset of reals. Here, and later throughout this paper, a time scale will be denoted by the symbol T , and the intervals with a subscript T are used to denote the intersection of the usual interval with T. For t ∈ T , we define the forward jump operator σ : T → T by σ(t) := inf(t, ∞)T while the backward jump operator ρ : T → T is defined by ρ(t) := sup(−∞, t)T , and the graininess function µ : T → R+ 0 is defined to be µ(t) := σ(t) − t. A point t ∈ T is called right-dense if σ(t) = t and/or equivalently µ(t) = 0

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.