TAILIEUCHUNG - Cartan equivalence problem for third-order differential operators

This article is dedicated to solving the equivalence problem for a pair of third-order differential operators on the line under general fiber-preserving transformation using the Cartan method of equivalence. We will treat 2 versions of equivalence problems: First, the direct equivalence problem, and second, an equivalence problem to determine conditions on 2 differential operators such that there exists a fiber-preserving transformation mapping one to the other according to gauge equivalence. | Turkish Journal of Mathematics Research Article Turk J Math (2013) 37: 949 – 958 ¨ ITAK ˙ c TUB ⃝ doi: Cartan equivalence problem for third-order differential operators Mehdi NADJAFIKHAH,1 Rohollah BAKHSHANDEH CHAMAZKOTI2,∗ School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran 2 Department of Mathematics, Faculty of Basic Science, Babol University of Technology, Babol, Iran 1 Received: • Accepted: • Published Online: • Printed: Abstract: This article is dedicated to solving the equivalence problem for a pair of third-order differential operators on the line under general fiber-preserving transformation using the Cartan method of equivalence. We will treat 2 versions of equivalence problems: first, the direct equivalence problem, and second, an equivalence problem to determine conditions on 2 differential operators such that there exists a fiber-preserving transformation mapping one to the other according to gauge equivalence. Key words: Differential operator, Cartan equivalence, gauge equivalence, invariant, pseudogroup, Lie algebra 1. Introduction The classification of linear differential equations is a special case of the general problem of classifying differential operators, which has a variety of important applications, including quantum mechanics and the projective geometry of curves [9]. The general equivalence problem is to recognize when 2 geometrical objects are mapped on each other by a certain class of diffeomorphisms. E. Cartan developed the general equivalence problem and provided a systematic procedure for determining the necessary and sufficient conditions [1, 2]. In Cartan’s approach, the conditions of equivalence of 2 objects must be reformulated in terms of differential forms. We associate a collection of one-forms to an object under investigation in the original coordinates; the corresponding object in .

TỪ KHÓA LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.