TAILIEUCHUNG - Statistical convergence of max-product approximating operators

In this study, using the notion of statistical convergence, we obtain various statistical approximation theorems for a general sequence of max-product approximating operators, including Shepard type operators, although its classical limit fails. We also compute the corresponding statistical rates of the approximation. | Turk J Math 34 (2010) , 501 – 514. ¨ ITAK ˙ c TUB doi: Statistical convergence of max-product approximating operators Oktay Duman Abstract In this study, using the notion of statistical convergence, we obtain various statistical approximation theorems for a general sequence of max-product approximating operators, including Shepard type operators, although its classical limit fails. We also compute the corresponding statistical rates of the approximation. Key Words: Statistical convergence, max-product operators, Shepard operators, statistical rates. 1. Introduction In the classical approximation theory, many well-known approximating operators obey the linearity condition. In recent years, Bede et al. [3] have shown that it is possible to find some approximating operators that are not linear, such as, max-product and max-min Shepard type approximating operators. Actually, these operators are pseudo-linear which is a quite effective structure in solving the problems in many branches of applied mathematics, such as, image processing [4], differential equations [19, 20], idempotent analysis [18] and approximation theory [3, 5]. However, so far, almost all results regarding approximations by pseudolinear operators are based on the validity of the classical limit of the operators. Hence, in this paper, we focus on the following problem: is it possible to make an approximation by max-product operators although its classical limit fails? As an answer to this problem we mainly use the concept of statistical convergence, which was first introduced by Fast [13]. Recent studies demonstrate that the notion of statistical convergence provides an important contribution to the improvement of the classical approximation theory (see, for instance, [1, 2, 7, 8, 9, 10, 11, 12]). This paper is organized as follows: The first section is devoted to basic definitions and notations used in the paper. In the second section, we obtain some statistical approximation .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.