# TAILIEUCHUNG - On the codifferential of the Kahler form and cosymplectic metrics on maximal flag manifolds

## Using moving frames we obtain a formula to calculate the codifferential of the Kahler form on a maximal flag manifold. We use this formula to obtain some differential type conditions so that a metric on the classical maximal flag manifold be cosymplectic. | Turk J Math 34 (2010) , 305 – 315. ¨ ITAK ˙ c TUB doi: On the codiﬀerential of the K¨ ahler form and cosymplectic metrics on maximal ﬂag manifolds Marlio Paredes and Sof´ıa Pinz´ on Abstract Using moving frames we obtain a formula to calculate the codiﬀerential of the K¨ ahler form on a maximal ﬂag manifold. We use this formula to obtain some diﬀerential type conditions so that a metric on the classical maximal ﬂag manifold be cosymplectic. Key Words: Codiﬀerential, K¨ ahler form, ﬂag manifolds, diﬀerential forms. 1. Introduction In this note we study the K¨ ahler form on the classical maximal ﬂag manifold F(n) = U (n)/(U (1) × · · · U (1)). The geometry of this manifold has been studied in several papers. Burstall and Salamon  showed the existence of a bijective relation between almost complex structures on F(n) and tournaments with n vertices. This correspondence has been very important to study the geometry of the maximal complex manifold, see for example , , , ,  and . In , was showed the existence of a one to-one correspondence between (1, 2)-symplectic metrics and locally transitive tournaments. In , this result was generalized for (1, 2)-symplectic metrics deﬁned using f -structures. Mo and Negreiros , by using moving frames and tournaments, showed explicitly the existence of an ndimensional family of invariant (1, 2)-symplectic metrics on F(n). In order to do this, they obtained a formula to calculate the diﬀerential of the K¨ ahler form by using the moving frames technique. In the present work we use a similar method in order to obtain a formula to calculate the codiﬀerential of the K¨ ahler form. An important reference to our calculations is the book by Griﬃths and Harris ; we use deﬁnitions, results and notations contained in this book to diﬀerential forms of type (p, q). Finally, we use such formula to ﬁnd some diﬀerential type conditions in order for a metric on a maximal ﬂag manifold be .

TÀI LIỆU LIÊN QUAN
11    18    0
TÀI LIỆU XEM NHIỀU
3    6372    87
14    4501    234
8    3919    1442
8    3601    1
2    2981    24
24    2964    55
9    2731    3
35    2710    135
29    2596    73
8    2483    20
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
4    37    0    18-05-2021
39    27    0    18-05-2021
25    40    0    18-05-2021
12    23    0    18-05-2021
106    13    1    18-05-2021
32    7    1    18-05-2021
5    4    1    18-05-2021
23    25    0    18-05-2021
10    19    0    18-05-2021
8    23    0    18-05-2021
TÀI LIỆU HOT
8    3919    1442
112    840    394
122    813    296
14    4501    234
20    1624    209
36    1307    199
35    1110    196
21    2052    177
16    2081    176
171    1095    168