# TAILIEUCHUNG - Uniqueness of derivatives of meromorphic functions sharing two or three sets

## In the paper we consider the problem of uniqueness of derivatives of meromorphic functions when they share two or three sets and obtained five results which will improve all the existing results. | Turk J Math 34 (2010) , 21 – 34. ¨ ITAK ˙ c TUB doi: Uniqueness of derivatives of meromorphic functions sharing two or three sets Abhijit Banerjee and Pranab Bhattacharjee Abstract In the paper we consider the problem of uniqueness of derivatives of meromorphic functions when they share two or three sets and obtained ﬁve results which will improve all the existing results. Key word and phrases: Meromorphic functions, uniqueness, weighted sharing, derivative, shared set. 1. Introduction, deﬁnitions and results In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane. It will be convenient to let E denote any set of positive real numbers of ﬁnite linear measure, not necessarily the same at each occurrence. For any non-constant meromorphic function h(z) we denote by S(r, h) any quantity satisfying S(r, h) = o(T (r, h)) (r −→ ∞, r ∈ E). Let f and g be two non-constant meromorphic functions and let a be a ﬁnite complex number. We say that f and g share a CM, provided that f − a and g − a have the same zeros with the same multiplicities. Similarly, we say that f and g share a IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In addition, we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g share 0 IM. We denote by T (r) the maximum of T r, f (k) and T r, g(k) . The notation S(r) denotes any quantity satisfying S(r) = o(T (r)) (r −→ ∞, r ∈ E). Let S be a set of distinct elements of C∪ {∞} and Ef (S) = a∈S {z : f(z)−a = 0} , where each zero is counted according to its multiplicity. If we do not count the multiplicity the set Ef (S) = a∈S {z : f(z) − a = 0} is denoted by E f (S). If Ef (S) = Eg (S) we say that f and g share the set S CM. On the other hand, if E f (S) = E g (S), we say that f and g share the set S IM. F. Gross ﬁrst considered the uniqueness of meromorphic functions that share sets of

TÀI LIỆU LIÊN QUAN
4    12    0
8    8    0
7    4    0
25    9    0
8    8    0
7    9    0
6    8    0
14    13    0
TÀI LIỆU XEM NHIỀU
3    3533    63
24    2560    24
8    2159    11
29    2055    22
165    1826    1
35    1826    43
2    1778    10
64    1735    6
1    1665    7
15    1663    3
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
88    7    0    31-10-2020
98    15    0    31-10-2020
223    10    4    31-10-2020
25    10    0    31-10-2020
4    13    0    31-10-2020
35    8    0    31-10-2020
37    8    0    31-10-2020
18    7    0    31-10-2020
5    8    0    31-10-2020
57    7    0    31-10-2020
TÀI LIỆU HOT
580    1344    125
171    761    116
21    669    101
16    696    99
312    180    98
3    3533    63
37    197    58
116    119    57
51    345    55
17    233    54