TAILIEUCHUNG - Mô hình hóa biến động thị trường chứng khoán: Thực nghiệm từ Việt Nam
Bài viết nghiên cứu mô hình hóa biến động của thị trường chứng khoán Việt Nam dựa trên dữ liệu chuỗi thời gian là giá đóng cửa hàng ngày của chỉ số VN-Index trong giai đoạn 2005 - 2016. Các phân tích được thực hiện bằng mô hình GARCH cân xứng và bất cân xứng. Theo tiêu chí AIC và SIC, nghiên cứu chứng minh rằng GARCH (1,1) và EGARCH (1,1) được đánh giá là mô hình thích hợp nhất để đo lường các dao động đối xứng và bất đối xứng của VN-Index. | Tạp chí Khoa học ĐHQGHN: Kinh tế và Kinh doanh, Tập 33, Số 3 (2017) 1-11 Mô hình hóa biến động thị trường chứng khoán: Thực nghiệm từ Việt Nam Hồ Thủy Tiên, Hồ Thu Hoài, Ngô Văn Toàn* Trường Đại học Tài chính Marketing, 2/4 Trần Xuân Soạn, Tân Hưng, Quận 7, Thành phố Hồ Chí Minh, Việt Nam Nhận ngày 16 tháng 8 năm 2017 Chỉnh sửa ngày 09 tháng 9 năm 2017; Chấp nhận đăng ngày 10 tháng 10 năm 2017 Tóm tắt: Nghiên cứu mô hình hóa biến động của thị trường chứng khoán Việt Nam dựa trên dữ liệu chuỗi thời gian là giá đóng cửa hàng ngày của chỉ số VN-Index trong giai đoạn 2005 - 2016. Các phân tích được thực hiện bằng mô hình GARCH cân xứng và bất cân xứng. Theo tiêu chí AIC và SIC, nghiên cứu chứng minh rằng GARCH (1,1) và EGARCH (1,1) được đánh giá là mô hình thích hợp nhất để đo lường các dao động đối xứng và bất đối xứng của VN-Index. Nghiên cứu cung cấp bằng chứng cho sự tồn tại của các hiệu ứng bất cân xứng (đòn bẩy) bởi các tham số của mô hình EGARCH (1,1) cho thấy các cú sốc tiêu cực có ảnh hưởng đáng kể đến phương sai có điều kiện (biến động), tuy nhiên ở mô hình TGARCH (1,1) thì kết quả không như kỳ vọng. Nghiên cứu cũng cung cấp cho nhà đầu tư một công cụ để dự báo tỷ suất lợi tức của thị trường chứng khoán. Đồng thời, kết quả nghiên cứu sẽ giúp nhà đầu tư nhận định được mức lợi nhuận và sự biến động của thị trường để từ đó đưa ra quyết định đúng đắn trong việc nắm giữ các chứng khoán. Từ khóa: Biến động bất đối xứng, biến động điều kiện, các mô hình GARCH, hiệu ứng đòn bẩy. 1. Giới thiệu theo thời gian được cho là phụ thuộc vào giá trị quá khứ của chính nó (autoregressive), điều kiện của các thông tin trong quá khứ (conditional) và tồn tại phương sai thay đổi (heteroskedastic). Các nghiên cứu cho rằng những biến động của thị trường chứng khoán thay đổi theo thời gian và biến động theo cụm, trong đó một chuỗi thời gian với một số thời kỳ biến động thấp và một số thời kỳ biến động cao được cho là tồn tại biến động theo cụm (volatility clustering). Phương sai .
đang nạp các trang xem trước