Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology.[10]. | IEEE TRANSACTIONS ON FUZZY SYSTEMS VOL. 12 NO. 4 AUGUST 2004 481 Neuro-Fuzzy Control of a Robotic Exoskeleton With EMG Signals Kazuo Kiguchi Member IEEE Takakazu Tanaka and Toshio Fukuda Fellow IEEE Abstract We have been developing robotic exoskeletons to assist motion of physically weak persons such as elderly disabled and injured persons. The robotic exoskeleton is controlled basically based on the electromyogram EMG signals since the EMG signals of human muscles are important signals to understand how the user intends to move. Even though the EMG signals contain very important information however it is not very easy to predict the user s upper-limb motion elbow and shoulder motion based on the EMG signals in real-time because of the difficulty in using the EMG signals as the controller input signals. In this paper we propose a robotic exoskeleton for human upper-limb motion assist a hierarchical neuro-fuzzy controller for the robotic exoskeleton and its adaptation method. Index Terms Biomedical signal analysis electromyography exoskeleton power amplifiers robots. I. Introduction Due to a decrease in birthrate and progress of aging society role of robotics technology becomes important in the field of medicine and welfare. We have been developing robotic exoskeletons 1 - 3 to assist motion of physically weak persons such as elderly disabled and injured persons. These kinds of robotic systems can be used for power assist of physically weak persons in daily activity and rehabilitation. It is important for the robotic exoskeleton especially that for medical or welfare use to move according to the user s intention. The skin surface electromyogram EMG is one of the most important biological signals in which the human motion intention is directly reflected. Consequently it is often used as a control command signal for a robot system 4 - 6 . In this paper a robotic exoskeleton for human upper-limb motion assist which is controlled with the EMG signals and its control .