Đang chuẩn bị liên kết để tải về tài liệu:
ON THE EXISTENCE OR THE ABSENCE OF GLOBAL SOLUTIONS OF THE CAUCHY CHARACTERISTIC PROBLEM FOR SOME

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

ON THE EXISTENCE OR THE ABSENCE OF GLOBAL SOLUTIONS OF THE CAUCHY CHARACTERISTIC PROBLEM FOR SOME NONLINEAR HYPERBOLIC EQUATIONS S. KHARIBEGASHVILI Received 20 October 2004 For wave equations with power nonlinearity we investigate the problem of the existence or nonexistence of global solutions of the Cauchy characteristic problem in the light cone of the future. 1. Statement of the problem Consider a nonlinear wave equation of the type u := ∂2 u − ∆u = f (u) + F, ∂t 2 (1.1) where f and F are the given real functions; note that f is a nonlinear and u is an unknown real. | ON THE EXISTENCE OR THE ABSENCE OF GLOBAL SOLUTIONS OF THE CAUCHY CHARACTERISTIC PROBLEM FOR SOME NONLINEAR HYPERBOLIC EQUATIONS S. KHARIBEGASHVILI Received 20 October 2004 For wave equations with power nonlinearity we investigate the problem of the existence or nonexistence of global solutions of the Cauchy characteristic problem in the light cone of the future. 1. Statement of the problem Consider a nonlinear wave equation of the type __ d2 u _ Du u - Au f u F 1.1 dt2 where f and F are the given real functions note that f is a nonlinear and u is an unknown real function A y 1 d2 dx2. For 1.1 we consider the Cauchy characteristic problem on finding in a truncated light cone of the future Dt x t T x x1 . xn n 1 T const 0 a solution u x t of that equation by the boundary condition uIst g 1.2 where g is the given real function on the characteristic conic surface St t x t T. When considering the case T TO we assume that D- t x and s _ dl D t x . Note that the questions on the existence or nonexistence of a global solution of the Cauchy problem for semilinear equations of type 1.1 with initial conditions u t o u0 du dtlt 0 u1 have been considered in 1 2 6 7 8 10 13 14 15 16 17 18 22 23 26 30 31 . As for the characteristic problem in a linear case that is for problem 1.1 - 1.2 when the right-hand side of 1.1 does not involve the nonlinear summand f u this problem is as is known formulated correctly and the global solvability in the corresponding spaces of functions takes place 3 4 5 11 25 . Below we will distinguish the particular cases of the nonlinear function f f u when problem 1.1 - 1.2 is globally solvable in one case and unsolvable in the other one. Copyright 2006 Hindawi Publishing Corporation BoundaryValue Problems 2005 3 2005 359-376 DOI 10.1155 BVP.2005.359 360 The Cauchy characteristic problem 2. Global solvability of the problem Consider the case for f u -A u pu where A 0 and p 0 are the given real numbers. In this case 1.1 takes the form d2u Lu 4-pT - ku -A

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.