Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Tài liệu hướng dẫn ôn tập môn toán | WWW.MATHVN.COM Khảo sát hàm số Đồ thị hàm số và các bài toán liên quan A. KIẾN THỨC CẦN NHỚ 1. Tính đơn điệu của hàm số 1.1. Định nghĩa. Cho hàm số f xác định trên K với K là khoảng đoạn hay nửa khoảng. Khi đó -I- f đồng biến trên K o Vxp X2 6 K X1 X2 f x1 f x2 . -I- f nghịch biến trên K o Vxp X2 6 K X1 X2 f x1 f x2 . 1.2. Điều kiện cần và đủ Cho hàm số f có đạo hàm trên khoảng I. Khi đó -I- f đồng biến trên I o f x 0 Vx 6 I và f x 0 chỉ tại một số điểm hữu hạn thuộc I. -I- f nghịch biến trên I o f x 0 Vx 6 I và f x 0 chỉ tại một số điểm hữu hạn thuộc I. -I- f là hàm hằng trên I o f x 0 Vx 6 I. 2. Cực trị của hàm số 2.1. Điều kiện cần để có cực trị Cho hàm số f có đạo hàm tại x0. Nếu hàm số f đạt cực trị tại x0 thì f r x0 0 . 2.2. Điều kiện đủ để có cực trị 2.2.1. Điều kiện đủ thứ nhất. Cho hàm số f có đạo hàm trên khoảng a b x0 6 a b . Khi đó www.MATHVN.com WWW.MATHVN.COM Khảo sát hàm số 2.2.2. Điều kiện đủ thứ hai. Cho hàm số f có đạo hàm cấp một trên a b chứa x0 f x0 0 và f x0 0. Khi đó f x0 0 f đạt cực đại tại x0 f x0 0 f đạt cực tiểu tại x0. Chú ý. Ta thường sử dụng Điều kiện đủ thứ hai trong các bài toán có yêu cầu liên quan đến cực trị tại những điểm cụ thể cho trước. 2.3. Đường thẳng qua hai điểm cực trị 2.3.1. Hàm số y f x ax3 bx2 cx d a 0 c Giả sử đồ thị c có hai điểm cực trị A xa yA B xB yB . Thực hiện phép chia đa thức f x cho f x ta được f x g x .f x ax p . Khi đó ta có yA f xA g xA . f xA axA fi axA fi 0 yB f xB g xB .f xB axB fi axB fi . 0 Suy ra A B 6 A y ax Ị3 nên A là đường thẳng qua hai điểm cực trị của đồ thị C . ax2 bx c 2.3.2. Hàm số y f x ------------------ a 0 C dx e Giả sử đồ thị c có hai điểm cực trị A xa yA B xB yB . Đặt u x ax2 bx c u x v x - u x v x v x dx e . Khi đó f x ----. Neu f đạt cực trị tại x0 thì v x x u x. u x x u x u x v x u x v x 0 o 0 0 hay f x 0 . 0 0 0 0 v xữ v xữ yJ v v x0 2ax b . 2ax b B . Suy ra A B 6 A y d d 2axA b X Do đó ta có yA f xA ------d và yB f xB nên A là đường thẳng qua hai điểm cực trị của đồ thị c . Chú ý.