Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học:Propagation of mean degrees Dieter Rautenbach

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

We propose two alternative measures of the local irregularity of a graph in terms of its vertex degrees and relate these measures to the order and the global irregularity of the graph measured by the difference of its maximum and minimum vertex degree.All graphs will be simple and finite. Let G = (V,E) be a graph of order n = |V |. The degree and the neighbourhood of a vertex u 2 V will be denoted by d(u) and N(u). The maximum and minimum degree of G will be denoted by (G) and (G). | Propagation of mean degrees Dieter Rautenbach Forschungsinstitut fur Diskrete Mathematik Universitat Bonn Lennestr. 2 D-53113 Bonn Germany rauten@or.uni-bonn.de Submitted May 6 2002 Accepted Jul 29 2003 Published Jul 26 2004 MR Subject Classifications 05C35 05C99 Abstract We propose two alternative measures of the local irregularity of a graph in terms of its vertex degrees and relate these measures to the order and the global irregularity of the graph measured by the difference of its maximum and minimum vertex degree. 1 Introduction All graphs will be simple and finite. Let G V E be a graph of order n V . The degree and the neighbourhood of a vertex u E V will be denoted by d u and N u . The maximum and minimum degree of G will be denoted by A G and 8 G . A graph G is usually called regular if A G 8 G which trivially implies that d u d v for all edges uv E E. In view of this convention we considered in 5 the expressions A G 8 G and max d u d v l uv E E as suitable measures of the global and local irregularity of G respectively. The main results of 5 are asymptotically tight lower bounds on the order of a connected graph in terms of its global and local irregularity. The intuition behind these bounds is that the global irregularity of a connected graph with bounded local irregularity can only be large if its order is large. Following suggestions of M. Kouider and J.-F. Sacle 3 we will consider here two alternative measures of local irregularity. Again our main results relate the order of the graph its global irregularity and one of these measures. A reasonable requirement for a possible measure of local irregularity is that it should be zero for a connected graph if and only if the global irregularity is zero. It is easy to see that A G 8 G 0 for a connected graph G if and only if X d v d u 0 for every u E V 1 veN u THE ELECTRONIC JOURNAL OF COMBINATORICS 11 2004 N11 1 or -rà X d u N u d v d u 0 for every u E V. 2 The terms in 1 and 2 are the total and the mean .

TÀI LIỆU LIÊN QUAN
TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.