Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ
Tải xuống
Liên quan ðến hàm số liên tục trên một ðoạn , ngýời ta ðã chứng minh ðýợc ðịnh lý sau ðây: Ðịnh lý: Cho hàm số f(x) liên tục trên [a,b]. Khi ðó ta có: (i) f có gía trị nhỏ nhất và gía trị lớn nhất trên [a,b] (ii) | GIÁO TRÌNH TOÁN CAO CẤP A1 Liên quan đến hàm số liên tục trên một đoạn người ta đã chứng minh được định lý sau đây Định lý Cho hàm số f x liên tục trên a b . Khi đó ta có i f có gía trị nhỏ nhất và gía trị lớn nhất trên a b ii Đặt m min f x x e a b M max f x x e a b Ta có f a b m M iii Cho một số thực yo tùy ý thuộc m M ta có xoe a b sao cho yo f xo Hệ quả Nếu f liên tục trên a b và f a .f b 0 Thì phương trình f x 0 có nghiệm trong khoảng a b . BÀI TẬP CHƯƠNG I 1. Tính các giới hạn sau a b 7 c lim X- 1 . 3 I K2 d lim 1 - Vx2 -1 2.Tính giới hạn 1 - cos3 X a lim ---------- x- 0 x.sin 2x Sưu tầm by hoangly85 GIÁO TRÌNH TOÁN CAO CẤP A1 1 síĩl X -cosx b lim - - x- 01 - cúi s - cos ỉĩ x- 0 sm X tgx t 1 sin X - V1 - sin X lim-----------------2---------- x- 0 tgx e lim X tg X- co x 3.Tính giới hạn ứ lim í. Ịn X à - In x ĩ- b hiii ---- - X2 1 c lim ccs x shUÍ x- 0 d lim x- 0 x 4.Xác định a và b sao cho các hàm số sau đây là liên tục trên IR. Sưu tầm by hoangly85 GIÁO TRÌNH TOÁN CAO CẤP A1 5.Chứng minh rằng phương trình 2x3 Q5x 1 0 Có 3 nghiệm trên đoạn -2 2 6.Chứng minh rằng các phương trình sau đây có nghiệm 2x2 E5x3-2x-1 0 2x 3x 6x Sưu tầm by .