Đang chuẩn bị liên kết để tải về tài liệu:
Conjugacy structure type and degree structure type in finite p-groups

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

Let G be a finite p−group, and denote by k(G) number of conjugacy classes in G. The aim of this paper is to introduce the conjugacy structure type and degree structure type for p−groups, and determine these parameters for p−groups of order p5 and calculate k(G) for them. | Turk J Math 24 (2000) , 321 – 326. ¨ ITAK ˙ c TUB Conjugacy Structure Type and Degree Structure Type in Finite p−groups Yadolah Marefat Abstract Let G be a finite p−group, and denote by k(G) number of conjugacy classes in G. The aim of this paper is to introduce the conjugacy structure type and degree structure type for p−groups, and determine these parameters for p−groups of order p5 , and calculate k(G) for them. Key Words: breadth, conjugacy structure type, degree structure type. 1. Introduction Let G be a finite p−group, and denote by k(G) number of conjugacy classes of G. We remind the reader that an element g of p−group G is said to have breadth bG(g)(b(g) if no ambiguity is possible) if pbG(g) is the size of conjugacy class of g in G. The breadth b(G) of G will be maximum of breadths of its elements. We have, b(G) = 1 if and only if |G0 | = p (see [4]), b(G) = 2 if and only if |G0 | = p2 or |G : Z(G)| = p3 and |G0 | = p3 (see [7]). Let si be the number of conjugacy classes of size pi in G. Let m be a Pm non-negative integer such that sm 6= 0, and si = 0 for i > m. Then |G| = i=0 si pi , and P k(G) = m i=0 si . We define the tuple (s0 , s1 , . . . , sm ), Conjugacy Structure Type of G, Definition 1. and denote by Tc (G). It is clear that G is abelian if and only if m = 0. 321 MAREFAT Let αi be the number of irreducible characters of G of order pi . Let h be Ph a non-negative integer such that αh 6= 0, and αi = 0 for i > h. Then |G| = i=0 αi p2i , P and k(G) = hi=0 αi . We define the tuple (α0 , α1, . . . , αh ), Degree Structure Type of G, Defintion 2. and denote by Td (G). We know that b(G) is the maximum index of i such that si is nonzero, that means b(G) = m. We denote by β(G) the maximum index of i such that αi is nonzero that is β(G) = h. Burnside’s Formula. Let G be a finite p−group and M be a maximal subgroup in G. If s and t are the number respectively of invariant and fused conjugacy classes of M then k(G) = ps + t p = s(p − p1 ) + k(M .

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.