Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Computer graphics: Lecture 13 - Fasih ur Rehman

Đang chuẩn bị nút TẢI XUỐNG, xin hãy chờ

This chapter discuss the purpose of the components required for successful communications; describe these uses of computer communications: wireless messaging services, wireless Internet access points, cybercafés, global positioning systems, collaboration, groupware, voice mail, and Web services; | Computer Graphics Lecture 13 Fasih ur Rehman Last Class Cross Product Plane Sphere Transformations Today’s Agenda Transformations Translation Example (Scaling) Find the transformed point, P’, subject to scaling P= (6, 2) through a vector v = (a, b) where i) a = b = 3; ii) a = 3, b = 4; iii) a = 1; b = -4 Example (Rotation) Find the transformed point, P’, caused by rotating P= (6, 2) about the origin through an angle of 90 Translation In translation all points in an object move to new position along the same straight-line path. The path is called translation vector or shift vector Example (Translation) Find the transformed point, P’, caused by translating P= (6, 2) through a vector v = (2, 4) Shear Reflection Special form of scaling Scaling by -1 Scaling Matrix a = -1, b = 1 a = 1, b = -1 a = -1, b = -1 Reflection Combining Transforms General transformation of a point: P' = N • P + A Scaling or rotation, Translate, we set A, and N is the multiplicative identity. Summary Translation . | Computer Graphics Lecture 13 Fasih ur Rehman Last Class Cross Product Plane Sphere Transformations Today’s Agenda Transformations Translation Example (Scaling) Find the transformed point, P’, subject to scaling P= (6, 2) through a vector v = (a, b) where i) a = b = 3; ii) a = 3, b = 4; iii) a = 1; b = -4 Example (Rotation) Find the transformed point, P’, caused by rotating P= (6, 2) about the origin through an angle of 90 Translation In translation all points in an object move to new position along the same straight-line path. The path is called translation vector or shift vector Example (Translation) Find the transformed point, P’, caused by translating P= (6, 2) through a vector v = (2, 4) Shear Reflection Special form of scaling Scaling by -1 Scaling Matrix a = -1, b = 1 a = 1, b = -1 a = -1, b = -1 Reflection Combining Transforms General transformation of a point: P' = N • P + A Scaling or rotation, Translate, we set A, and N is the multiplicative identity. Summary Translation Shear Reflection Combining Transforms References Fundamentals of Computer Graphics Third Edition by Peter Shirley and Steve Marschner Interactive Computer Graphics, A Top-down Approach with OpenGL (Sixth Edition) by Edward . | Computer Graphics Lecture 13 Fasih ur Rehman Last Class Cross Product Plane Sphere Transformations Today’s Agenda Transformations Translation Example (Scaling) Find the transformed point, P’, subject to scaling P= (6, 2) through a vector v = (a, b) where i) a = b = 3; ii) a = 3, b = 4; iii) a = 1; b = -4 Example (Rotation) Find the transformed point, P’, caused by rotating P= (6, 2) about the origin through an angle of 90 Translation In translation all points in an object move to new position along the same straight-line path. The path is called translation vector or shift vector Example (Translation) Find the transformed point, P’, caused by translating P= (6, 2) through a vector v = (2, 4) Shear Reflection Special form of scaling Scaling by -1 Scaling Matrix a = -1, b = 1 a = 1, b = -1 a = -1, b = -1 Reflection Combining Transforms General transformation of a point: P' = N • P + A Scaling or rotation, Translate, we set A, and N is the multiplicative identity. Summary Translation Shear Reflection Combining Transforms References Fundamentals of Computer Graphics Third Edition by Peter Shirley and Steve Marschner Interactive Computer Graphics, A Top-down Approach with OpenGL (Sixth Edition) by Edward Angel.

TAILIEUCHUNG - Chia sẻ tài liệu không giới hạn
Địa chỉ : 444 Hoang Hoa Tham, Hanoi, Viet Nam
Website : tailieuchung.com
Email : tailieuchung20@gmail.com
Tailieuchung.com là thư viện tài liệu trực tuyến, nơi chia sẽ trao đổi hàng triệu tài liệu như luận văn đồ án, sách, giáo trình, đề thi.
Chúng tôi không chịu trách nhiệm liên quan đến các vấn đề bản quyền nội dung tài liệu được thành viên tự nguyện đăng tải lên, nếu phát hiện thấy tài liệu xấu hoặc tài liệu có bản quyền xin hãy email cho chúng tôi.
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.